X-raying the *Global* Hot Interstellar and Circum-galactic Media

Q. Daniel Wang (Umass) and Yangsen Yao (U. of Colorado)

In collaboration with T. Tripp (Umass), et al.
X-ray absorption line spectroscopy: adding depth into the map

ROSAT all-sky survey in the 0.5-keV band

Futamoto et al. 2004, Wang et al. 05, Yao & Wang 05/06, Yao et al. 06/07/08
X-ray absorption line spectroscopy is powerful!

- Tracing all K transitions of metals → all three phases of the ISM.
- Not affected by photo-electric absorption → unbiased measurements of the global ISM.

Yao & Wang 2006, Yao et al. 2006, Futamoto et al. 2004
Spectroscopic diagnostics

• One line (e.g., OVII Kα) → velocity centroid and EW → constraints on the column density, assuming b and T
• Two lines of different ionization states (OVII and OVIII Kα) → T
• Two lines of the same state (Kα and Kβ) → b
• Lines from different species → relative abundance \(f_a \)
• Multiple sightlines --> differential hot gas properties
• Joint-fit of absorption and emission data --> pathlength and density
LMC X-3: absorption lines

- BH X-ray binary undergoing Roche lobe accretion
- Away from the LMC main body
- 50 kpc away
- $V_s = +310 \text{ km/s}$
- The line centroids of the OVI and OVII lines are consistent with their Galactic origin.
- $N_{\text{OVII}} \sim 1.9 \times 10^{16} \text{ atoms/cm}^2$, similar to those seen in AGN spectra!
- $T \sim 1.3 \times 10^6 \text{ K}$
- $b \sim 79 \text{ km/s}$

Wang et al. 2005
Joint-fit to the Suzaku XIS diffuse emission spectrum

- Single temperature fit $\rightarrow T = 2.4 \times 10^6$ K, significantly higher than that inferred from the X-ray absorption lines.

- Joint-fit to the absorption and emission data gives
 - $n_e = (3.6 \times 10^{-3}$ K $) e^{-|z|/2.8 \text{ kpc}}$;
 - $T = (2.4 \times 10^6$ K $) e^{-|z|/1.4 \text{ kpc}}$

$\rightarrow P/k \sim 1.1 \times 10^4 \text{ cm}^{-3} \text{ K}$, assuming filling factor = 1.

\rightarrow This thick hot disk can explain all the OVI absorption, except for \sim10% of high-ν OVI emission.

100 ks Suzaku observations of LMC X-3 off-fields
(Yao, Wang, et al. 2008)
Galactic global hot gas properties

- **Thermal property:**
 - mean $T \sim 10^{6.3}$ K toward the inner region
 - $\sim 10^{6.1}$ K at solar neighborhood

- **Velocity dispersion** from ~ 200 km/s to 80 km/s

- **Abundance ratios** \sim solar

- **Structure:**
 - A thick Galactic disk with a scale height of ~ 2 kpc,
 \sim the values of OVI absorbers and free electrons
 - Enhanced hot gas around the Galactic bulge
 - 95% upper limit: $N_{\text{OVII}} \sim 3 \times 10^{15}$ cm$^{-2}$ for $r > 10$ kpc
 $\sim 1 \times 10^{15}$ cm$^{-2}$ for $r > 50$ kpc

No evidence for a large-scale X-ray-emitting/absorbing halo!
No evidence for X-ray line absorption by hot gas in intervening groups of galaxies

- Sightline: PKS 2115-304
- Total exposure: 1 Ms
- Selected galaxies: < 500 kpc projected distance.

Background AGNs, Chandra observations, and the number of intervening galaxies

<table>
<thead>
<tr>
<th>Src. Name</th>
<th>z_{AGN}</th>
<th>No. of Obs.</th>
<th>Exp. (ks)</th>
<th>No. of gal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1821+643</td>
<td>0.297</td>
<td>5</td>
<td>600</td>
<td>7(5)</td>
</tr>
<tr>
<td>3C 273</td>
<td>0.158</td>
<td>17</td>
<td>530</td>
<td>47(44)</td>
</tr>
<tr>
<td>PG 1116+215</td>
<td>0.176</td>
<td>1</td>
<td>89</td>
<td>12(11)</td>
</tr>
<tr>
<td>PKS 2155-304</td>
<td>0.117</td>
<td>46</td>
<td>1075</td>
<td>14(13)</td>
</tr>
<tr>
<td>Ton S180</td>
<td>0.062</td>
<td>1</td>
<td>80</td>
<td>3(3)</td>
</tr>
<tr>
<td>PG 1211+143</td>
<td>0.081</td>
<td>3</td>
<td>141</td>
<td>46(45)</td>
</tr>
<tr>
<td>Mrk 766</td>
<td>0.013</td>
<td>1</td>
<td>90</td>
<td>13(12)</td>
</tr>
<tr>
<td>H1426+428</td>
<td>0.129</td>
<td>3</td>
<td>184</td>
<td>3(3)</td>
</tr>
<tr>
<td>1H 0414+009</td>
<td>0.287</td>
<td>2</td>
<td>88</td>
<td>4(2)</td>
</tr>
<tr>
<td>Mrk 509</td>
<td>0.034</td>
<td>1</td>
<td>59</td>
<td>1(1)</td>
</tr>
<tr>
<td>IC 4329a</td>
<td>0.016</td>
<td>1</td>
<td>60</td>
<td>3(3)</td>
</tr>
<tr>
<td>Fairall 9</td>
<td>0.047</td>
<td>1</td>
<td>80</td>
<td>1(1)</td>
</tr>
<tr>
<td>Sub total:</td>
<td>82</td>
<td>3076</td>
<td>154(143)</td>
<td></td>
</tr>
</tbody>
</table>

Blue lines: Galactic absorption

Vertical red bars: expected group absorption line positions

Yao, Y., QDW, T. Tripp, et al. (2010)
Stacking of absorption line spectra according to intervening galaxy/group redshifts

With an effective exposure: ~ 10 Ms, no absorption is detected!

- \(N_{\text{OVII}} < 10^{15} \text{ cm}^{-2} \), or < 1/10 of the column density observed around the Milky Way.
- Groups typically contain little gas at \(T \sim 10^{5.3}-10^{6.3} \text{ K} \), unless the Oxygen abundance is \(< 1/10 \) solar.
The intergalactic warm-hot gas: Stacking according to OVI absorbers

Y. Yao, T. Tripp, QDW, et al. (2009)
Stacked Chandra grating spectrum

- 16 absorbers along 6 sight lines.
- \(N_{\text{OVII}} < 10 N_{\text{OVI}} \) at the 95% confidence; similar constraints on the complex and strong OVI absorbers, separately.
- Implications: 1) \(T < 10^{5.7} \) K for the OVI-bearing gas (assuming CIE); 2) the OVI gas may be mostly photo-ionized or at interfaces between cool and hot (\(T > 10^{6.4} \) K) phases.